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ABSTRACT Traps for monitoring of ßying insect pests constitute a critical part of integrated pest
management strategies. However, interpretation of trap captures is hampered by 1) factors associated
with the performance of traps (i.e., lure, trap design, placement); 2) an often poorly deÞned
relationship between trap captures and population density; and 3) interpretation approaches being
highly speciÞc to a certain insect species, trapping method, or trapping environment. The main
purpose of this study was to identify a trap capture interpretation approach with little sensitivity to
characteristics speciÞc to a given data set, which would allow easier comparison of trapping data sets
and make it easier to standardize sampling plans across insect pests and trapping environments. Based
on Þts of trapping data sets to standard distributions (normal, Poisson, and negative binomial),
evaluations of the index of aggregation, k, and linear regression coefÞcients from TaylorÕs power law,
we concluded that these characteristics varied considerably among data sets, which means that
enumerative sampling plans may not be appropriate. Across 13 trapping data sets of six insect species,
we showed a consistent nonlinear relationship between average trap captures and number of traps
with zero captures and that the k can be stabilized by converting trapping data into binomial data. A
trap interpretation approach based on number of zero captures is both easy to use, was found to be
species-independent, and means that it may be possible to establish meaningful and reliable action
thresholds based on trap captures of ßying insects. Although developed using trapping data from food
facilities, this approach may have application to trapping data from other environments as well.
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Effective integrated pest management (IPM) strate-
gies rely heavily on early and accurate detection of
emerging pest populations. Thus, monitoring of insect
pests populations, based on trap captures, constitutes
a critical component of IPM and has been the main
focus of many ecological studies during the last four
decades. Many studies underscore the usefulness of
monitoring programs, based on trapping of ßying in-
sects, in early detection and as decision support tool
(based on action thresholds). However, the usefulness
of monitoring data in IPM programs seems to be fre-
quently hampered by an inconsistent and often poor
relationship between trap captures and actual insect

population densities (Vela-CoifÞer et al. 1997, Hag-
strum et al. 1998, Nansen et al. 2004a, Toews et al.
2005), which raises the fundamental question about
what a given set of trap captures actually means?
Another challenge is that interpretation of trap cap-
tures tend to work well for some data sets but not for
others. For example, Nansen et al. (2001) developed
a fairly robust weather-driven regression model of
weekly Prostephanus truncatus (Horn) (Coleoptera:
Bostrichidae) ßight activity for southern Benin. Based
on independent validation data, the authors showed
that 1) P. truncatus ßight activity was predicted well
elsewhere in southern Benin, 2) in central Benin new
coefÞcients for the same environmental variables
were needed to produce an adequate prediction, and
3) the model did not Þt pheromone baited trap catches
from northern Benin. Such inconsistency in the ac-
curacy of interpretation approaches is obviously as-
sociated with a wide range of environmental and phys-
iological factors, but it also is associated with many
factors associated with the actual performance of
traps, including trap type (Levinson and Hoppe 1983;
Ahmad 1987; Barak et al. 1990; Mullen 1992; Quartey
and Coaker 1992; Hussain et al. 1994; Mullen et al.
1998; Mullen and Dowdy 2001; Nansen et al. 2003,
2004b), visual cues on traps (Quartey and Coaker
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1992), pheromone composition (Phelan and Baker
1986, Zhu et al. 1999), pheromone dosage in lures
(Vick et al. 1986, Hussain et al. 1994, Nansen et al.
2006b), air movement (Quartey and Coaker 1992),
and trap placement (Vick et al. 1986; Nansen et al.
2003, 2004c).

When analyzing trap captures, variation in accuracy
of interpretation approaches is a problem, because it
adds serious constraints to the usefulness of a given
analysis, makes it very difÞcult to compare interpre-
tations of different data sets, and it also hampers at-
tempts to standardize sampling protocols for different
insects and/or across ranges of trapping environ-
ments. Itwould thereforebedesirable if itwaspossible
to identify an interpretation approach that would be
less sensitive to insect species, trapping method and
environment. We suspect that use/interpretation of
trap captures in IPM programs is hampered, because
we are mainly focusing on establishing direct links
between absolute counts of insect in traps and their
occurrence within the given sampling space and focus
on 1) how well trapping data and/or combinations of
environmental variables (i.e., weather conditions) can
be used to predict/forecast insect pest populations
over time and space and 2) how to develop action
thresholds based on trapping data. Much less attention
has been given to the frequency distribution of trap
captures and to what extent changes in frequency
distribution may reßect changes in population densi-
ties. The most simple approach to analysis of trap
capture distribution is to examine the binomial distri-
bution of captures (presence/absence). That is, the
purpose of such an analytical approach would not be
to locate/identify hot spots with high infestation levels
nor to predict the pest population in weeks ahead,
instead the objective could be to use the proportion of
zerocaptures(empty traps)as an indicatorofwhether
current monitoring data indicate a need for treatment
(or any other kind of action).

In this study, we evaluated different standard in-
terpretation methods related to sequential sampling,
and the main purpose is to identify an approach that
can be used across a wide range of species (is species
in-dependent) and trapping environments. We exam-

ined Þts of trapping data to standard distributions
(normal, Poisson, and negative binomial), the index of
aggregation, k, and regression coefÞcients from Tay-
lorÕs power law (TPL), and evaluated Sequential
Probability Ratio Test (SPRT) and Iwao conÞdence
interval sampling plans. In addition, we investigated
the relationship between zero captures and total in-
sects captured in 13 trapping data sets of six insect
species and developed a modiÞed sequential sampling
plan based on binomial data (proportion of traps with
zero insects captured). This analysis is used to discuss
common features in trap data sets and improved in-
terpretation of trap captures in general. Although this
study is based on trapping data from food facilities, a
similar interpretation approach may be applied for
monitoring pest status in Þeld crops, forests, green-
houses, and urban environments.

Materials and Methods

Trapping Data from Food Processing Facility,
1993–1996. Trap captures of the almond moth, Ephe-
stia cautella (Walker) (Lepidoptera: Pyralidae), were
obtained from the ground ßoor of a 70- by 70-m food
processing facility. A monitoring grid with 130 traps
was established in November 1993, and trapping was
completed 21 March 1996. Traps were serviced in
10Ð35-d intervals for a total of 51 trapping events, with
6,519 individual trap captures (Table 1). In two of
these trapping events, only 70 and 107 traps were
serviced, whereas in the remaining trapping events
less than two traps of 130 were missing. There was
considerable variation in age of lures and traps (7Ð112
d) and in the length of service intervals, but within
trapping events all traps contained lures with same
ages. Also, these results are typical for commercial
settings, which are the intended environment for the
proposed sampling plan.
Trapping Data from Peanut Warehouses, 2007.

Trapping data of the Indianmeal moth, Plodia inter-
punctella (Hübner) (Lepidoptera: Pyralidae), were
collected from two peanut warehouses in northwest-
ern Texas (Table 1). For monitoring, we used 250-ml
water bottles Þlled with �150 ml of tap water, and two

Table 1. Trap captures of P. interpunctella with water bottles in two peanut warehouses were analyzed for their fit to three standard
distributions: normal, Poisson, and negative binomial

Warehouse Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11

Warehouse 1
Total captures 24 44 54 66 102 148 250 486 631 857 933
Zero captures 23 17 14 13 12 8 4 3 1 1 0
Normal S S NS NS NS S S S NS S S
Poisson S S NS S S S S S S S S
Negative binomial NS NS NS NS NS NS S S S S S

Warehouse 2
Total captures 21 72 100 197 290 389 676 962 1084 726
Zero captures 25 10 10 10 4 2 0 0 0 0
Normal S S NS NS NS S S S NS S

Poisson S S NS S S S S S S S
Negative binomial NS NS S NS NS NS S S S NS

S denotes that the observed weekly data set was signiÞcantly different (P� 0.05) from expected (predicted based on standard distribution);
NS denotes no signiÞcant difference between observed and predicted.
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diagonal rectangles (4 cm in width by 2 cm in height)
were cut in each bottle, and the “lip” was folded
outward to serve as a landing platform. Peanut ware-
house 1 was 40 m in width, 200 m in length, and 60 m
in height at the tallest point and had a sloped roof. The
total capacity was 10,000 tons of unshelled peanuts
(runner type), and monitoring was conducted in a
one-fourth section of the warehouse, which was fully
loaded so that the headspace above the peanut pile
was �1Ð1.5 m. In total, 36 traps were placed in 3-m
intervals with outer traps �1Ð2 m from side walls.
Trapping was initiated 23 April, 2007, and all traps
were serviced weekly for 11 consecutive weeks. Trap-
ping was terminated when the warehouse was fumi-
gated with phosphine 13 July. The peanut warehouse
2 was 40 m in width, 100 m in length, and 40 m in height
with a ßat roof. The total capacity was 10,000 tons of
unshelled peanuts (runner type), and trapping was
conducted in a one-Þfth section of the warehouse. The
peanut pile was ßat (horizontal) all across the top of
the sampling area and �20 m in height, and there was
3Ð4-m headspace. Horizontal ropes were attached to
side walls and vertical wires and sampling devices
were suspended from these ropes in an asymmetric
grid pattern in 3-m intervals. In warehouse 2, we ini-
tiated the trapping program 14 May and continued for
10 consecutive weeks, and which point the peanuts
were processed and shelled.
Additional Data Sets.Nansen et al. (2003) analyzed

pheromone-baited trap captures of the warehouse
beetle, Trogoderma variabile Ballion (Coleoptera:
Dermestidae) with two different trap types: Pherocon
II (Trécé, Adair, OK) and FLITe-TRAK beetle trap
(Mullen 1992) (Table 1). In both trap types, a rubber
septum impregnated with synthetic sex pheromone of
T. variabile was used as attractant and trapping was
conducted for nine weeks (N � 18). Trapping data
described in Nansen et al. (2004a) included captures
of foreign grain beetle [Ahasverus advena (Waltl)
(Coleoptera: Silvanidae)], red ßour beetle [Tribolium
castaneum (Herbst.) (Coleoptera: Tenebrionidae)],
maize weevil [Sitophilus zeamais Motschulsky (Co-
leoptera:Curculionidae)], andP. interpunctella.These
insects were captured weekly with unbaited sticky
traps at 20 trapping locations over 16 consecutive
weeks.
SPRT Sampling Plan. Each of the 21 weekly trap

capture data sets of P. interpunctellawith water bottles
in peanut warehouses were compared with those pre-
dicted from the following standard frequency distri-
butions using formulas available in Excel (Microsoft,
Redmond, WA): normal, Poisson, and negative bino-
mial (NB). Differences between observed and pre-
dictedwereanalyzedwithachi-square test.Regarding
predictions based on NB distributions, k parameters
were calculated for each weekly data set. The k pa-
rameter, an index of aggregation, is a positive number
calculated when Þtting data to positive binomial
and/or NB distributions. The standard formula for
calculation of the k of data following an NB distribu-
tion (where mean � variance) is k� mean2/(variety-
mean) (Pedigo and Zeiss 1996). However, if data fol-

low a positive binomial distribution (mean [mt]
variance), the same formula is modiÞed to: k� mean2/
(mean-variety) (Pedigo and Zeiss 1996). In the pos-
itive binomial distribution, the k is used to calculate p,
the probability of trapping an insect, such that p �
mean/k, and it is clear that k� 0. Initially, Þtting trap
captures of P. interpunctella to a positive binomial
distribution was therefore not considered relevant as
the mean:variance of absolute counts was �1, which
resulted in negative k estimates.

To examine the importance of varying k in devel-
opment of sampling plans, WaldÕs SPRT sampling plan
for an NB distribution (Binns 1994) was developed for
trap captures of P. interpunctellawith water bottles in
peanut warehouses. Three pieces of information are
needed for the development of SPRT sampling plans:
1) a known or assumed frequency distribution, 2) the
economic threshold, and 3) acceptable level of risk
associated with action threshold estimates (Pedigo
and Zeiss 1996). In an SPRT plan, m0 represents the
upper threshold for a low population density that does
not require action, whereas m1 represents the lowest
population density at which action is recommended
(Pedigo and Zeiss 1996). The critical threshold, mt, is
deÞned, “below which [treatment] is not desirable
and above which it is desirable” (Binns 1994). The mt

is considered the midpoint of a probability interval
between 0 (no action is taken) and 1 (action is taken)
as a function of insect counts. That is, when insect
counts are either very low or high, the sampling plan
can with high accuracy determine that no action or
action is needed, but the operating characteristic
(OC) is used to describe this relationship, around mt,
when insect counts are within an intermediate range.
Generally, the steepness of the slope of OC within an
intermediate range indicates the robustness of a sam-
pling plan (Binns 1994). A shallow slope of OC around
mt indicates a higher probability of error. The risks of
type 1 and type 2 errors are determined by user-
deÞned levels of � and �, respectively, and they are
typically set at either 1 or 5%. The sampling plan
approach is also used to characterize the relationship
between insect counts and estimated average sample
number (ASN) required to determine whether action
is needed or not. The ASN is expected to reach peak
values at and around mt. To determine OC and ASN,
we used a C�� program (Meikle et al. 2000) to re-
randomize the order in which trap captures were
examined within each trapping event (1,000 itera-
tions) from both peanut warehouses and apply sam-
pling plans to each rerandomized set. Each iteration
repeated the sequential sampling procedure using the
trapping data, changing only the order in which trap
captures were drawn.
Taylor’s Power Law and the Iwao Confidence In-
terval Sampling Plan. Taylors power law (Taylor
1961) is used in development of Iwao (distribution-
free), enumerative sequential sampling stop lines and
was considered here as an alternative approach to
SPRT plans. We determined linear regression coefÞ-
cients, a (slope) and b (intercept) after applying Tay-
lorÕs power law to each of the 13 data sets of P. inter-
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punctella in peanut warehouses, and coefÞcients from
each data set were compared statistically with those
from the linear regression coefÞcients based on all 189
data points combined. Thus, we tested whether the
individual data sets were statistically different from
the overall mean. Pairwise statistical comparisons of
linear regression coefÞcients from one data set with
those from all data points were conducted based on
Wiley et al. (1998), and each coefÞcient, a and b,were
examined separately. In brief, parameter estimates
were examined based on a t-test and the following
equations:

t �
� x1 � x2�

�� xse 1
2 � xse 2

2�
[1]

where x1 is the parameter estimate of eitheraorb from
one of the 13 data sets, x2 is the parameter estimate of
either a or b based on all data points, and xse is the
standard error associated with each parameter esti-
mate. And degrees of freedom (df) of the t-test were
as follows:

df � �n1 � 2� � �189 � 2 � 187� [2]

In which n1 is the number of observations in a given
data set and 187 is equal to the number of all obser-
vations minus 2.

Parameters from the TPL analysis were used to
construct sampling stop lines by using the Iwao con-
Þdence interval method (Binns 1994) for the same
data set used in the SPRT plan described above. Pa-
rameters needed for the Iwao plan include the TPL
parameters, a and b, as well as the midpoint between
mt and z�, where z� is the 100(1 � z�)% normal
deviate. In our analysis, z� � 1.96. As with the SPRT
analysis, 1,000 rerandomized interations of each sam-
pling occasion were conducted.
Relationship between Total Captures and Number
of Zero Captures.We examined the relationship be-
tween total captures and proportion of zero captures
for each trapping event in each of the 13 data sets.
Only trapping events with at least one insect captured
are included (Table 1), and we conducted a regression
analysis of proportion of traps with zero captures F(x)
as a function of average trap captures (equation 1):

F� x� � i � exp�j� x [3]

In which i and j are Þtted coefÞcients, and x is the
average trap capture. This curve Þt was chosen be-
cause it is simple and initial analyses provided high
level of predictive accuracy. The estimated coefÞ-
cients, i and j, from each of the 13 data sets were
examined in the same way as we examined coefÞcient
estimates of a and b from linear regression Þts to
TaylorÕs power law (equations 1 and 2).
Binomial Sequential Sampling Plan.Observed trap

captures from all 13 data sets were converted into
binomial data (presence, 1 and absence, 0), which
resulted in a mean:variance ratio 	1, so it was con-
sidered appropriate to Þt each data set to a positive
binomial distribution. One considerable advantage of
using data sets that follow a positive binomial distri-
bution is that the calculation of the decision lines, d0

and d1, becomes independent of the k (Pedigo and
Zeiss 1996). In the binomial sampling plan presented
here, m1 and m0 denote proportional thresholds, with
m0 being the highest proportion of traps with trap
captures that does not require action, whereas m1

represents the minimum proportion of traps with trap
captures at which action is recommended. For exam-
ple, m0 � 0.4 means that action is not required when
�40% of traps contain insects, and m1 � 0.7 means that
action should be taken when 	70% of traps contain
insects. For such action thresholds to be meaningful to
a speciÞc pest problem, they would have to be based
on an economic analysis of economic injury level
(Pedigo 1994), which was beyond the scope of this
study.

Results

Evaluation of Sampling Plans.One of the Þrst steps
in development of sequential sampling plans is deter-
mining how well a given data set Þts standard fre-
quency distributions. We found that trap captures of
P. interpunctella in peanut warehouses: 1) Þt a Poisson
distribution for only 1 wk in each warehouse (two of
21 weekly data sets), 2) Þt a normal distribution in four
weekly data sets from each warehouse; and 3) Þt a NB
distribution in six weekly data sets from each ware-
house (12 of 21 data sets) (Table 1). With the NB
distribution providing the most consistent Þt to
weekly trapping data, differences between weeks with
signiÞcant and nonsigniÞcant Þts was examined, and a
signiÞcant Þt to NB distribution was signiÞcantly as-
sociated with low total trap captures (F� 16.92; df �
1, 19; P � 0.001) and/or high number of trapping
locations with zero captures (F� 11.71; df � 1, 19; P�
0.003) (Fig. 1). Despite fairly consistent Þt of the 21
weekly data sets to a NB distribution, estimates of k
showed marked variation (average, 2.72 
 0.51, min.,
0.47; max, 9.00) and were signiÞcantly correlated with
mean trap captures (R2 � 0.62; F � 30.52, df � 1, 20;
P � 0.01). To illustrate the importance of k estimates
varying close to 20-fold, we examined two scenarios
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Fig. 1. Relationship between Þt/nonÞt of weekly trap
captures of P. interpunctella with an NB distribution and
average trap captures (a) or average number of zero captures
(empty traps) (b). NB denotes weekly that sets that were
nonsigniÞcantly different from an NB; Other denotes weekly
that sets that were signiÞcantly different from an NB. Letters
represent signiÞcant difference at the 0.05 level.
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within the observed trap capture range andk� 0.5 and
5.0 and with cumulative action thresholds, m0 and m1,
of 3 and 5. A low k (high level of aggregation) gen-
erally increased the required sampling effort and the
distance between the stop lines (Fig. 2a). Thus, k� 0.5
would in this case mean that at least 13 traps would
have to be serviced to determine that action would not
be necessary. However, if k� 5.0, then the minimum
sampling effort was reduced to less than three traps
and the distance between the stop lines likewise re-
duced. The ASN (Fig. 2c) differed considerably be-
tween the two sets of stop lines, because only a max-
imum of �10 traps on average were needed to make
a decision when k� 5.0, whereas if k� 0.5 all available
traps were not sufÞcient for a decision when density
was between m0 and m1. Results from the iterative
analysis showed that the OC differed somewhat be-
tween the two sets of stop lines (Fig. 2d) and that the
riskof anerrorwashighwhen theaverage trapcapture
per trap was �5. A highly variable, density-dependent
or species-speciÞc k is therefore a considerable prob-
lem when developing sequential sampling plan to be
used in a wide range of trapping environments and
within a considerable range of trap captures. Due to
the highly variable estimates of k, an Iwao (distribu-
tion-free) sampling plan based on TaylorÕs power law
coefÞcients also was conducted (Fig. 2b). The dis-
tance between the Iwao stop lines was considerably
less than those for either SPRT plan. A narrow “no
decision” zone leads to fast decisions, as was observed
with the low ASN across all densities: the ASN was less
than four across all observed densities. Although this
has the advantage of providing a rapid answer to some-
one using the plan, the error rate was also very high,
indicating that the results could not be considered in

any way accurate. As seen in the OC data, even when
the known trap density was �8 insects per trap, 16%
of the sampling runs indicated a “low” density (less
than three insects per trap).

As part of our evaluation of sequential sampling plan
approaches, TaylorÕs power law was used to examine
13 trapping data sets of six different insect pest species
(P. interpunctella, E. cautella, T. variabile, A. advena, L.
minutus, and T. castaneum) captured with both baited
and unbaited traps. Our analysis revealed that seven of
the 13 estimates of regression coefÞcienta (slope) and
Þve regression coefÞcient of b (intercept) were sig-
niÞcantly different from the same estimate of all data
points. In 10 of the 13 data sets at least one of the
regression coefÞcients, a and b, was signiÞcantly dif-
ferent from those of all data sets combined.
Relationship between Total Captures and Number
of Zero Captures. Even though nine of 21 weekly
trapping data sets of P. interpunctella in peanut ware-
houses were signiÞcantly different from a NB distri-
bution, close examination of predictions derived from
the NB distribution showed that number of trapping
locations with zero captures was predicted accurately
for all data sets (R2 � 0.965; F � 531.2; df � 1, 20; P
�0.001). Thus, we pursued this approach further by
Þtting all trapping data sets combined to the NB dis-
tribution and showed that number of trapping loca-
tions with zero captures could be predicted accurately
(R2 � 0.978; F � 7804.8; df � 1, 189; P � 0.001) (Fig.
3). That is, the entire range of a trapping data set may
not show a good Þt to the NB distribution, but pre-
dictions of zero captures were very accurate. We also
showed that there was a highly signiÞcant correlation
between proportion of zero captures and average trap
capture (R2 � 0.53, a� 0.86, b� 0.39; F� 219.9; df �
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1, 189; P � 0.001) (Fig. 4). Based on equation 2, we
found that in three of the 13 estimates of regression
coefÞcient i was signiÞcantly different from the same
estimate of that from all data points, and Þve of the 13
estimates of regression coefÞcient jwere signiÞcantly
different from the same estimate of all data points
(Table 2). Thus, regression coefÞcients based on
equation 2 were slightly more robust (similar to over-
all means) compared with those derived from TaylorÕs
power law and suggested that there may be a fairly
consistent relationship between average captures and
zero captures across in data sets of a wide range of
ßying insect species. The regression line in Fig. 4
suggested that with average trap captures of Þve in-
dividuals, �80% of the traps contained insects and that
a further increase in trap captures dramatically de-
creased the proportion of traps with zero captures.
Binomial Sequential Sampling Plan. Due to the

strong correlation between observed and predicted
number of zero captures (Fig. 3) and the consistent
and highly signiÞcant relationship between the num-
ber of zero captures and average trap captures (Fig.
4), a binomial sequential sampling plan (presence/

absence) was examined on the basis of all 13 data sets.
Transformation to binomial data resulted in a mean:
variance ratio 	1, so all data sets were Þtted to a
positive binomial distribution, and consistent k esti-
mates were obtained from all data sets (Fig. 5). Stan-
dard errors associated with each mean k estimate were
�0.1, and the maximum kwas only 2Ð3 times the mean
(compared with 20-fold range when k estimates were
based on Þt to NB distribution). Such consistent k
estimates are noteworthy as both total trap captures
and numbers of traps used varied considerably among
data sets. Because the mean:variance ratio 	1 for the
binomial data, a positive binomial distribution was
assumed to provide the best Þt. When data are con-
sidered to follow a positive binomial distribution, the
decision lines in a sequential sampling plan are inde-
pendent of the k, because they are exclusively deter-
mined by m0, m1, and levels of acceptable risk (� and
�). The risk of a type I error, �, and that of a type II
error, �, associated with the d0 and d1 stop lines were
each set to 1 and 5%. In an SPRT sampling plan, the
stop lines are parallel, because decisions are based on
cumulative counts. But in the analytical approach pre-
sented here, we used proportional data (proportion of
traps with or without captures), so the y-axis ranged
from 0 to 1. This transformation was obtained by di-
viding estimates of d0 and d1 with the number of
trapping stations. Using the settings outlined above
(m0 � 0.4, m1 � 0.7, � and � � 0.01) and assuming Þt
to a positive binomial distribution, formulae available
in Pedigo and Zeiss (1996) shows that, for instance, 20
trapping stations provide estimates of d0 and d1 equal
to 7.4 and 14.7, respectively. We divided these esti-
mates with 20 and thereby obtained proportional es-
timates of d0 and d1 equal to 0.4 and 0.7 for 20 trapping
stations. Due to this proportional transformation, the
stop lines were asymptotic approaching 0.55. Accord-
ing to the curve in Fig. 4, there was a large increase in
average trap captures when the proportion of zero
captures fell below 0.40. For this reason, 0.7 was pro-
posed as m1 and 0.4 as m0. Figure 6 shows proportional
stop lines based on a positive binomial distribution,
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Fig. 3. Using all trap captures (Table 1), we examined the
relationship between observed and predicted number of
zero captures based on a Þt of weekly data to a negative
binomial distribution. A linear regression was conducted and
is presented together with 95% conÞdence intervals.
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and it is seen that 1) �10 trapping stations are used,
it is not possible to accurately determine whether
action is needed or not; 2) with 20 trapping stations,
�70% of traps containing insects would merit action
and �40% of traps containing insects would suggest
that no action is needed; and 3) although both stop
lines asymptotically approach 0.55, it is seen that the
two lines become close to parallel if 	35 trapping
stations are used, which may be used as an indicator
of maximum number of trapping stations.

Discussion

Successful implementation of IPM strategies largely
depends on the development of cost-effective, user-
friendly, and reliable monitoring programs. However,
most attempts to develop direct associations between
trap captures and population densities have, at best,

been inconsistent, and a wide range of studies have
highlighted factors (e.g., trap type, lure, trap place-
ment) that hamper interpretation of trapping data
sets. In this study, we showed that 1) the k associated
with trap captures showed considerable variation, and
we demonstrated how a varying k causes complica-
tions when developing SPRT sampling plans, 2) num-
berof trapswithzerocapturescouldbepredictedvery
accurately when trap captures were Þtted to the NB
distribution, 3) linear regression coefÞcients from Þts
to TaylorÕs power law were modestly consistent but
not as consistent as those from an exponentially de-
clining Þt to the relationship between average cap-
tures and number of zero captures, and 4) conversion
of trap captures into binomial data provided the
framework needed to modify interpretation of trap-
ping data in a way that was species- and k-indepen-
dent.

Considerable research effort has been invested in
developing trap-capture based IPM, but the nature of
operations in food facilities (sanitation, turnover of
food products) seems to hamper development of IPM
tools for accurate short- and long-term predictions of
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Fig. 5. After converting trapping data into binomial data,
k were calculated based on a Þt to a positive binomial dis-
tribution. Gray bars represent averages for each data set, bold
error bars denote SE, and thin error bars denote maximum.
The seven bars represent trapping data in Table 1, in which
numbers inbrackets aftergenusnames refer to thebars in this
Þgure.

Table 2. Data sets included in analysis of relationship between average captures and number of zero captures

Genus Trap Lure Wk Ht No. Avg (min.-max) R2 F i j Referencea

Trogoderma (2) Flite-Trak P 9 a 35 5.18 (2.32Ð8.86) 0.51 9.22* 0.78 0.36 a
Trogoderma (2) Pherocon II P 9 b 35 2.25 (0.86Ð3.94) 0.63 14.4** 0.62 0.33 a
Plodia (1) Pherocon II N 15 a 20 1.47 (0.05Ð7.74) 0.78 55.0*** 0.95 0.68 b
Tribolium (4) Pherocon II N 14 a 20 2.61 (0.17Ð6.26) 0.94 217.3*** 0.93 0.51 b
Lathridius (7) Pherocon II N 12 a 20 6.55 (0.14Ð12.47) 0.88 72.0*** 0.98 0.19 b
Ahasverus (5) Pherocon II N 10 a 20 2.35 (0.11Ð6.32) 0.96 252.5*** 1.00 0.35 b
Plodia (1) Pherocon II N 16 b 20 0.97 (0.23Ð3.11) 0.87 97.0*** 0.93 0.42 b
Tribolium (4) Pherocon II N 14 b 20 2.39 (0.14Ð4.63) 0.89 126.5*** 0.95 0.41 b
Lathridius (7) Pherocon II N 11 b 20 9.21 (0.21Ð21.62) 0.56 13.6** 0.89 0.07 b
Ahasverus (5) Pherocon II N 10 b 20 2.03 (0.11Ð7.11) 0.53 13.5** 0.86 0.08 b
Ephestia (6) Pherocon II P 51 a 130 1.16 (0.45Ð2.42) 0.76 165.0*** 0.83 0.50
Plodia (2) Bottle W 11 a 36 1.39 (0.03Ð4.64) 0.96 224.7*** 0.70 0.28
Plodia (2) Bottle W 9 a 35 0.90 (0.09Ð2.09) 0.9 85.8*** 0.73 0.26

Trapping data of six insect species were collected from different food facilities using different trapping devices (trap) and lures (P,
pheromone; N, unbaited; and W, water). In several of the food facilities, trapping data were collected at two heights (a, high; and b, low) within
the same facility. No. denotes the number of traps deployed in each data set, and Avg (min.-max) denotes average, minimum, and maximum
captures, respectively. R2, F, a, and b are results from regression analyses of the data shown in Fig. 1. *P� 0.05, **P� 0.01, and ***P� 0.001.
Numbers in parentheses after genus names denote column number in Fig. 5.
a a, Nansen et al. (2003) and b, Nansen et al. (2004).
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insect pest densities over time. In stored grain envi-
ronments, numerous studies have investigated the as-
sociation of abiotic conditions with ßuctuations in trap
captures of ßying insect, but use of abiotic variables in
forecasting is limited by the difÞculty in predicting
weather accurately more than a few days ahead. Spa-
tial prediction of insect infestations in stored product
environments is based upon knowledge about the spa-
tial structure of the given data set, and semivariogram
analysis is a well-known initial approach to examine
the spatial structure analysis (Isaaks and Srivastava
1989, Liebhold et al. 1993, Brenner et al. 1998). Semi-
variogram analyses of insect counts acquired from
stored food and food processing facilities often show
random spatial patterns (Nansen et al. 2003), and a
random spatial data structure means that it is not
possible to predict insect counts at unsampled loca-
tions, which again means that contour mapping and
other continuous spatial tools cannot be recom-
mended (Nansen et al. 2006a). Thus, both temporal
and spatial predictions of trap captures have faced
considerable challenges and made it somewhat difÞ-
cult to determine exactly what a given trap catch
actually means. The basic root to both of these chal-
lenges is a poor and inconsistent relationship between
trap captures and actual population densities. An al-
ternative to both temporal and spatial prediction of
absolute trap captures is to focus on the frequency
distribution of trap captures.

Our comparison of SPRT and Iwao (distribution-
free) sampling plans showed that the level of in-de-
cision (distance between stop lines) was less in the
Iwao sampling plan, but this sampling plan approach
also was found to have the highest level of error. A low
ASN is not necessarily a Þxed characteristic of Iwao
conÞdence interval plans; Binns (1994) and Meikle et
al. (1998) found that the Iwao method resulted in ASN
values several times higher, when insect densities
were between stop lines, than those observed with
SPRT plans constructed using the same data. These
varying results indicate that the Iwao method may be
a better approach than the SPRT, but it seems to be
quite sensitive to the stop line parameters and esti-
mates of the TPL parameters. Regarding stored grain
insects, sequential sampling plans have been devel-
oped for direct sampling, for example insects per
maize, Zea mays L., ear or volume of grain (Subra-
manyam et al. 1997, Meikle et al. 2000, Toews et al.
2002), but few studies have been published on the
development of sequential sampling plans for trapping
data of ßying insects in stored product environments.
Carvalho et al. (2006) trapped cigarette beetles, La-
sioderma serricorne (F.) (Coleoptera: Anobiidae) at
26 pheromone-baited locations. With upper and lower
action threshold of three and Þve beetles per trap per
wk, k � 1.09, and 5% error associated with action
threshold estimates, the authors concluded that six to
seven trapping stations would be a sufÞcient for de-
termining whether action is required (this conclusion
was based on the intercept of d0 with the x-axis). One
of the main assumptions behind an SPRT sampling is
that the k is constant (Bliss 1958). However, this is not

always the case (Southwood 1978, Elliott 1983), and
we found k to vary �20-fold among 21 weekly data sets
and that the mean number of samples required to
make an accurate decision ranged from between
10Ð40 (Fig. 2b). Thus, changes in k can considerably
affect sequential sampling plans that assume data to
follow a NB distribution. Figure 3 in Carvalho et al.
(2006) showed ASN to vary between three and 27,
with highest number of required insect counts at three
beetles per trap per wk. Thus, although the Carvalho
et al. (2006) concluded that six to seven trapping
stations would be a sufÞcient, their data seemed to
corroborate our analysisÑthat the accuracy of se-
quential sampling plans and number of required insect
counts are highly inßuenced by trap capture densities.
ASN curves varying as much as between three and 27
is less of a practical problem, when sequential sam-
pling plants are based on insect counts from entire
plants, soil samples, or leaves, because one can easily
vary the number of samples collected in each sampling
event. However, monitoring of insect populations
based traps means that the user/researcher has al-
ready established a predetermined number of trap-
ping stations, and, for a given trapping period, one
would not suggest only to service three of 27 traps;
once installed, all traps are typically serviced for each
trapping period. Also, these sampling plans assume
that sample units are collected at random from the
sampling universe. If, for example, 25 traps are placed
in a warehouse, then these would have to be serviced
in a random order and that all insects are counted in
each selected trap, if the objective was to interpret
trapping data with a sequential sampling plan.

The clear correlation between average trap cap-
tures and number of zero trap captures suggests a
modiÞed sampling approach, in which the emphasis is
on the number of empty traps. We showed that con-
version into binomial data stabilized k estimates across
a wide range of trap capture densities and across mul-
tiple species. Based on Fig. 6, we propose that between
�25 trapping stations should be used in monitoring
programs, because 1) a lower number of traps is as-
sociated with considerable in-decision (distance be-
tween stop lines), and 2) little additional robustness is
obtained when 	25 traps are used. Although based on
completely different assumptions and requirements
related to spatial statistics, Nansen et al. (2003, 2006a)
suggested a similar recommendation of 25Ð35 trapping
stations within a given sampling space. It was beyond
the scope of this study to develop a sequential sam-
pling plan for trap catches, as that would require de-
termination of economic thresholds, which are likely
to be species-speciÞc and vary among food facilities.
Instead, the main purpose was to propose a novel
approach to interpreting of trap captures which is
independent of the k and seemed to be consistent
across a very wide range of insect pest species, trap-
ping environments and types of monitoring devices.
Using a trap capture interpretation approach that is
moreconsistent across insectdensities andspecies and
across a wide range of trapping environments enables
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development of more consistent sampling plans and
more consistent comparison of data sets.
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